71 research outputs found

    KIT , PDGFRα and EGFR analysis in nephroblastoma

    Get PDF
    Nephroblastoma prognosis has dramatically improved, but an unfavourable prognostic subgroup warrants development of novel therapeutic strategies. Selective KIT, PDGFRα and epidermal growth factor receptor (EGFR) tyrosine kinase inhibition evolved as powerful targeted therapy for gastrointestinal stromal tumours and non-small-cell lung cancer. To investigate a potential role for tyrosine kinase inhibition, we analyzed 209 nephroblastomas for immunohistochemical KIT and EGFR expression, 63 nephroblastomas for mutations in KIT exons 9, 11, 13, EGFR exons 18, 19, 20 and 21, and all 209 nephroblastomas for PDGFRα exons 12, 14 and 18. Twenty-two tumours (10.5%) expressed KIT, 31 (14.8%) EGFR, and 10 (4.8%) both KIT and EGFR, respectively. KIT expression was relatively more common among high-risk tumours (6/27; 22.3%) compared to low-/intermediate-risk tumours (26/181; 14.4%). Nine patients deceased, four of which had high-risk tumours with KIT expression in two of four and EGFR expression in one of four. There were no KIT, PDGFRα or EGFR mutations. Our results suggest no significant contribution of KIT, EGFR or PDGFRα mutations to nephroblastoma pathogenesis. Despite a trend towards association of immunohistochemical KIT and EGFR expression with poor outcome in high-risk nephroblastomas, statistical analysis did not yield significant correlations in this subgroup. Therefore, it remains open if KIT, PDGFRα or EGFR tyrosine kinase inhibition constitute a therapeutic target in nephroblastoma in the absence of KIT, PDGFRα or EGFR mutation

    The KCNE genes in hypertrophic cardiomyopathy: a candidate gene study

    Get PDF
    The original publication is available at http://www.jnrbm.com/content/10/1/12Includes bibliographyAbstract Background The gene family KCNE1-5, which encode modulating β-subunits of several repolarising K+-ion channels, has been associated with genetic cardiac diseases such as long QT syndrome, atrial fibrillation and Brugada syndrome. The minK peptide, encoded by KCNE1, is attached to the Z-disc of the sarcomere as well as the T-tubules of the sarcolemma. It has been suggested that minK forms part of an "electro-mechanical feed-back" which links cardiomyocyte stretching to changes in ion channel function. We examined whether mutations in KCNE genes were associated with hypertrophic cardiomyopathy (HCM), a genetic disease associated with an improper hypertrophic response. Results The coding regions of KCNE1, KCNE2, KCNE3, KCNE4, and KCNE5 were examined, by direct DNA sequencing, in a cohort of 93 unrelated HCM probands and 188 blood donor controls. Fifteen genetic variants, four previously unknown, were identified in the HCM probands. Eight variants were non-synonymous and one was located in the 3'UTR-region of KCNE4. No disease-causing mutations were found and no significant difference in the frequency of genetic variants was found between HCM probands and controls. Two variants of likely functional significance were found in controls only. Conclusions Mutations in KCNE genes are not a common cause of HCM and polymorphisms in these genes do not seem to be associated with a propensity to develop arrhythmiaPeer Reviewe

    Diagnostics and the neglected tropical diseases roadmap: setting the agenda for 2030.

    Get PDF
    Accurate and reliable diagnostic tools are an essential requirement for neglected tropical diseases (NTDs) programmes. However, the NTD community has historically underinvested in the development and improvement of diagnostic tools, potentially undermining the successes achieved over the last 2 decades. Recognizing this, the WHO, in its newly released draft roadmap for NTD 2021-2030, has identified diagnostics as one of four priority areas requiring concerted action to reach the 2030 targets. As a result, WHO established a Diagnostics Technical Advisory Group (DTAG) to serve as the collaborative mechanism to drive progress in this area. Here, the purpose and role of the DTAG are described in the context of the challenges facing NTD programmes

    A new stable alpha chain variant : Hb Basel [alpha14(A12)Trp--<Leu (alpha1)]

    No full text
    We describe a heterozygosity for a new missense mutation on the alpha1-globin gene of an 18-year-old woman of Portuguese ancestry with severe hypochromic anemia and iron deficiency. Hemoglobin (Hb) analysis by high performance liquid chromatography (HPLC) found a prominent peak constituting about 12% of total Hb. Sequencing of the globin genes of the index patient found the mutation alpha14(A12)Trp--T. We identified the same mutation in blood and DNA of the mother, which provides evidence that the variant is stable and does not have direct pathophysiological or hematological consequences
    corecore